- OPERATIONAL AMPLIFIERS

OPERATIONAL AMPLIFIERS (Introduction and Properties)

OPERATIONAL AMPLIFIER CIRCUITS (Applications)
- I / V (CURRENT / VOLTAGE) CONVERTER
- INVERTING AMPLIFIER
- THE SUMMING AMPLIFIER
- THE NON-INVERTING AMPLIFIER
 - Effect of Finite A_{vo} on Feedback Amplifier Gain
 - Frequency Response of Real Operational Amplifiers
 - Frequency Response of an OpAmp Amplifier with Frequency Dependent Feedback
- THE DIFFERENCE AMPLIFIER
- LOGARITHMIC AMPLIFIERS
- ANTI-LOGARITHMIC AMPLIFIERS
 - Applications of Log / Anti-Log Amplifiers
- DIFFERENTIATOR AMPLIFIER
- THE INTEGRATOR
- PRECISION RECTIFIERS
- POWER OPERATIONAL AMPLIFIERS
- OP AMP. DC VOLTAGE REGULATOR
- OP AMP. VOLTAGE REGULATOR WITH ADJUSTABLE CURRENT LIMIT

- OPERATIONAL AMPLIFIERS (Introduction and Properties)
Phase relationships:

- Non-inverting input to output is 0°
- Inverting input to output is 180°

OPERATIONAL AMPLIFIER

- Differential-input, Single-Ended (or Differential) output,
- DC-coupled,
- High-Gain amplifier

<table>
<thead>
<tr>
<th></th>
<th>IDEAL OP-AMP</th>
<th>REAL OP-AMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{VO}, Gain (Differential)</td>
<td>∞</td>
<td>$10^4 - 10^6$ Bipolar input</td>
</tr>
<tr>
<td>R_{id}</td>
<td>∞</td>
<td>$10^5 - 10^6$ MOS or JFET input</td>
</tr>
<tr>
<td>R_{out}</td>
<td>0</td>
<td>$10^0 - 10^3$</td>
</tr>
<tr>
<td>C.M.R.R.</td>
<td>∞</td>
<td>90 - 120 dB</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>∞</td>
<td>\leq 100 Hz.</td>
</tr>
<tr>
<td>GBW (Gain – Bandwidth Product)</td>
<td>∞</td>
<td>1 MHz - 100 MHz</td>
</tr>
<tr>
<td>Offsets</td>
<td>0 (none)</td>
<td>Finite</td>
</tr>
</tbody>
</table>
IBQ1 and IBQ2

\[I_{\text{input} - \text{bias}} \approx |I_{\text{BQ1}}| = |I_{\text{BQ2}}| \]

Input Offset Current

\[I_{\text{OS}} = (I_{\text{BQ1}} - I_{\text{BQ2}}) \]

Real Operational Amplifiers

\[V_{\text{OS}} = V_{\text{OS}}(T), \quad I_{\text{OS}} = I_{\text{OS}}(T), \quad A_{\text{VO}} = A_{\text{VO}}(T) \]

Temperature Coefficient of Input Offset Voltage

\[\frac{dV_{\text{OS}}}{dT} \approx \frac{V_{\text{OS}}}{T} \]

where \(T \) is absolute temperature,

i.e. \(^\circ\text{K}\)
\[V_{OS} \leq 5 \text{ mV (Bipolar)} \]
\[(I_{OS}, I_{BIAS}) \leq 1 \mu A \text{ (Bipolar)} \]
\[\sim \text{ pA (JFET)} \]
\[\sim \text{ pA (MOSFET)} \]

OPERATIONAL AMPLIFIER CIRCUITS (APPLICATIONS)

In the following analyses, unless mentioned otherwise, the operational amplifiers are treated as if they are "ideal" or near ideal.

I / V (CURRENT / VOLTAGE) CONVERTER
\[
\left(\frac{I_{\text{Bias}+}}{I_{\text{Bias}-}} \right) \equiv 0 \quad V_{\text{OS}} \equiv 0
\]

Ideal Operational Amplifier

\[
v_{\text{OUT}} = A_{\text{VO}} (v_+ - v_-)
\]

If \(A_{\text{VO}} \rightarrow \infty \) \((v_+ - v_-) = \frac{v_{\text{OUT}}}{A_{\text{VO}}} \rightarrow 0 \quad v_+ \equiv 0 \Rightarrow v_- = 0 \) (Virtual Ground)

For \(v_- = 0 \) \((v_- - (v_{\text{OUT}})) = R_i R \Rightarrow R_i \rightarrow \quad v_{\text{OUT}} = -R_i \)

Therefore, this current-voltage converter circuit behaves just like a "Current-Controlled-Voltage-Source" with zero input resistance. (see Figure below)

- **INVERTING AMPLIFIER**
Since $v_- = 0$ (virtual ground)

\[i_{IN} = i_1 = \frac{v_1 - (v_-)}{R_1} = \frac{v_1}{R_1} \]

Therefore

\[i_{IN} = \frac{v_1}{R_1} \]

flows into the I–V converter which creates

\[v_{OUT} = -R_F i_{IN} \]

resulting in

\[v_{OUT} = \frac{-R_F}{R_1} v_1 \]

or,

\[A_v = \frac{R_F}{R_1} \quad R_{OUT} = 0 \]

\[R_{IN} = \frac{v_1}{i_1} = \frac{v_1}{i_{IN}} = R_1 \]

for the "inverting" amplifier.

THE SUMMING AMPLIFIER

Diagram of a summing amplifier circuit.
Since $v_\text{in} = 0$ (virtual ground)
\[i_1 = \frac{v_1 - 0}{R_1} = \frac{v_1}{R_1} \]
\[i_2 = \frac{v_2 - 0}{R_2} = \frac{v_2}{R_2} \]
\[\ldots \]
\[i_N = \frac{v_N - 0}{R_N} = \frac{v_N}{R_N} \]

\[i_{\text{IN}} = \sum_{i=1}^{N} i_i \]

and
\[v_{\text{OUT}} = -RF \cdot i_{\text{IN}} \]

\[v_{\text{OUT}} = -\frac{RF}{R_1} \cdot v_1 - \frac{RF}{R_2} \cdot v_2 - \ldots - \frac{RF}{R_N} \cdot v_N \]

where
\[a_i = -\frac{RF}{R_i} \]

Comment:
(1) This is equivalent to, mathematically, a weighted sum of inputs or simply an addition operation except for the (-) signs.
(2) To change the sign of the coefficient of an element of the sum simply employ a unity gain inverting amplifier at its input.
THE NON-INVERTING AMPLIFIER

From the resulting equation observe that:

1. The voltage gain is \(+ \left(\frac{R_F}{R_1} + 1 \right) \) positive.
2. If \(\frac{R_F}{R_1} \to 0 \) \((\text{R}_F \to 0 \text{ (short), R}_1 \to \infty \text{ (open)}) \)

then the gain becomes \((+1)\), i.e. **unity gain** (absolute unity). \(\text{v}_{\text{OUT}} = \text{v}_1 \)

UnityGainBuffer Amplifier

3. Since operational amplifier does not draw any current \(\text{i}_+ \approx 0 \) \(\Rightarrow \text{R}_{\text{IN}} \approx \infty \)
Effect of Finite A_{VO} on Feedback Amplifier Gain

BETA $\equiv \beta$ is a transfer relationship. In general $\beta = \beta(j\omega)$

For finite A_{VO}, $v_{OUT} = A_{vo}(v_+ - v_-)$, $v_+ = v_1$, $v_- = \beta.v_{OUT}$

$v_{OUT} = A_{vo}(v_1 - \beta.v_{OUT}) \Rightarrow (1 + \beta A_{vo})v_{OUT} = A_{vo}v_1 \Rightarrow$

\[
\frac{v_{OUT}}{v_1} = \frac{A_{vo}}{1 + \beta A_{vo}} \Rightarrow v_{OUT} = \frac{1}{1 + \frac{1}{\beta A_{vo}}} v_1
\]

Therefore, as long as $\beta A_{vo} >> 1$

\[
v_{OUT} \approx \frac{1}{\beta} v_1
\]

Example:
Special Case: \[\beta = \frac{V_{out}}{V_{in}} = \frac{R_1}{R_F + R_1} \]

\[V_{OUT} = \frac{1}{R_2 + R_F} \cdot V_1 = \left(1 + \frac{R_F}{R_1}\right) V_1 \]

Non-inverting amplifier

- **FREQUENCY RESPONSE OF REAL OPERATIONAL AMPLIFIERS**

 Internally Frequency Compensated Op.Amp. (One pole / capacitor dominates)

\[|A_vo(j\omega)|_{dB} = \begin{cases} 100 & \text{if single pole, -20dB/dec} \\ \frac{A_vo(0)}{1 + j \frac{\omega}{\omega_0}} & \text{GBW} \end{cases} \]

\[A_vo(j\omega) \approx \frac{A_vo(0)}{1 + j \frac{\omega}{\omega_0}} \]

\[A_vo(j\omega) \gg \omega_0 \approx \frac{A_vo(0)}{j \frac{\omega}{\omega_0}} \]

\[\omega = \omega_1 = \text{GBW} \]

Notes/Definitions:

Unity Gain Frequency = Gain Bandwidth Product (if single pole, -20dB/dec)

Unity Gain Frequency ≠ GBW (if not -20dB/dec)

Definitions:

- \(A_vo \): The Open Loop Gain (unloaded, no feedback)
- \(\beta \): The Feedback Ratio
- \(\beta A_vo \): The Closed Loop Gain
Non-Inverting Amplifier's Gain BandWidth Product

In the feedback amplifier utilizing this "Real Operational Amplifier"

\[V_{out}(j\omega) = \frac{1}{\beta(j\omega) \left(1 + \frac{1}{\beta(j\omega) \cdot A_v(j\omega)} \right)} \cdot V_1(j\omega) \]

For the non-inverting amplifier

\[\beta(j\omega) = \frac{R_1}{R_1 + R_F} = \text{constant} \]

\[\frac{V_{out}}{V_1} = \frac{1}{\beta} \cdot \frac{1}{1 + \frac{1}{\beta \cdot A_v(\omega)}} = \frac{1}{\beta} \cdot \frac{1}{1 + \frac{1+j\omega}{\beta \cdot A_v(0)}} = \frac{1}{\beta} \cdot \frac{1}{1 + \frac{1}{\beta \cdot A_v(0)} + \frac{j\omega}{\beta \cdot A_v(0)}} \]

For \(GBW = \omega_0 \cdot A_v(0) \) and, as long as \(\beta \cdot A_v(0) >> 1 \)

\[\frac{V_{out}}{V_1} = \frac{1}{\beta} \cdot \frac{1}{1 + \left(\frac{j\omega}{\omega_{-3\text{dB}}} \right)} = \frac{1}{\beta} \cdot \frac{1}{1 + \left(\frac{\omega}{\omega_{-3\text{dB}}} \right)} \]

where \((\omega_{-3\text{dB}}) \) of the feedback amp = \(\frac{\text{GBW}}{\left(\frac{1}{\beta} \right)} \)

and \(\left(\frac{1}{\beta} \right) \) is low frequency gain of the feedback amplifier

\((\text{Gain} \cdot \text{Bandwidth})_{\text{feedback amplifier}} = (\text{GBW})_{\text{operational amplifier}} \)
FREQUENCY RESPONSE OF AN OPAMP AMPLIFIER WITH FREQUENCY DEPENDENT FEEDBACK

Definitions:

A_{vo} The Open Loop Gain (of the opamp, unloaded, no feedback)

BETA ≡ β The Feedback Ratio

βA_{vo} The Closed Loop Gain

A_f The Feedback Gain (of the overall amplifier)

What if $A_{vo} = A_{vo}(j\omega)$ and $\beta(j\omega)$ the frequency response of the operational amplifier is more complicated?

Answer: As long as $\beta A_{vo} \gg 1$ the response will be $1/\beta(j\omega)$ as shown with the example below.
THE DIFFERENCE AMPLIFIER
11. Operational Amplifiers

\[v_1' = v + \]

\[v_2' \]

\[i_{B+} \]

\[i_{B-} \]

\[R_A \]

\[R_B \]

\[R_1 \]

\[R_F \]

\[v_{OUT} \]
Use the idea of superposition for 1 & 2:

1. \(v_1 \equiv 0 \), \(v_2 \neq 0 \)

\[
\text{v}_{\text{OUT}} = -\frac{R_F}{R_1} \cdot v_2
\]

2. \(v_1 \neq 0 \), \(v_2 \equiv 0 \)

\[
v_1' = \frac{R_B}{R_A + R_B} \cdot v_1
\]

\[
v_{\text{OUT}} = \left(\frac{R_F}{R_1} + 1 \right) v_1' = \left(\frac{R_F}{R_1} + 1 \right) \frac{R_B}{R_A + R_B} \cdot v_1
\]

\[
v_{\text{OUT}} = -\frac{R_F}{R_1} v_2 + \left(\frac{R_F}{R_1} + 1 \right) \frac{R_B / R_A}{(R_B / R_A) + 1} \cdot v_1
\]

If \(\frac{R_B}{R_A} = \frac{R_F}{R_1} \)

\[
v_{\text{OUT}} = \frac{R_F}{R_1} (v_1 - v_2)
\]

Pure Differential Response

A Different Approach:

\((A_v)_{\text{Op.Amp}} \rightarrow \infty \Rightarrow v_+ \approx v_- \)

\[
v_+ = \frac{R_B}{R_A + R_B} v_1 \quad \quad v_- = \frac{R_F}{R_1 + R_F} v_2 + \frac{R_1}{R_1 + R_F} v_{\text{OUT}}
\]

\[
\frac{R_B}{R_A + R_B} v_1 \approx \frac{R_F}{R_1 + R_F} v_2 + \frac{R_1}{R_1 + R_F} v_{\text{OUT}}
\]

\[
v_{\text{OUT}} = \left(\frac{R_1 + R_F}{R_1} \right) \left(\frac{R_B}{R_A + R_B} v_1 - \frac{R_F}{R_1 + R_F} v_2 \right)
\]

If \(R_B = R_F \) and \(R_A = R_1 \)

\[
\frac{R_B}{R_A} = \frac{R_F}{R_1}
\]

Then

\[
v_{\text{OUT}} = \frac{R_1 + R_F}{R_1} \left(\frac{R_F}{R_1 + R_F} v_1 - \frac{R_F}{R_1 + R_F} v_2 \right)
\]

Choose \(R_B = R_F \) and \(R_A = R_1 \) to make the resistances \((R_A // R_B) \) and \((R_1 // R_F) \) equal so that equal \(i_{B+} \) and \(i_{B-} \) bias currents (i.e. zero \(I_{O S} \)) create balanced shifts in \(v_+ \) and \(v_- \). Otherwise, the difference will get amplified and result in a large offset at the output.
LOGARITHMIC AMPLIFIERS

If \(v_- \) is virtual ground then

\[
i_1 \approx \frac{v_1 - v_-}{R_1} \Rightarrow i_1 \approx \frac{v_1}{R_1}
\]

\[
i_1 = i_C = I_S e^{\frac{v_{BE}}{kT}} \quad \text{for} \quad v_{BE} = -v_{OUT}
\]

Then for \(v_1 > 0 \) output becomes

\[
v_{OUT} = -\frac{(kT)}{q} \ln\left(\frac{v_1}{R_I I_S}\right) < 0
\]
For $v_1 < 0$, $v_{BE} = v_{OUT}$, $i_C = I_S e^{v_{BE}/kT} = I_S e^{v_{OUT}/kT}$. Then:

$$v_{OUT} = + \frac{(kT)}{q} \ln \left(\frac{-v_1}{R_F I_S} \right) > 0$$

- **ANTI-LOGARITHMIC AMPLIFIERS**

\[i_C = I_S e^{v_{BE}/kT}, \quad v_{OUT} = -R_F i_C = -R_F I_S e^{v_{BE}/kT} \]

For $v_{EB} = v_1$:

$$v_{OUT} = -R_F I_S e^{v_1/kT}$$

Works for $v_1 > 0$.
Amp - Log Amplifier for $v_1 < 0$

$V_{OUT} = +RF.I_S e^{-\frac{v_1}{kT/q}}$ (works if $v_1 < 0$)

Applications of Log / Anti-Log Amplifiers:

\[
\begin{align*}
\log(A \cdot B) &= \log A + \log B \\
\log(A / B) &= \log A - \log B \\
\log^a A + b \log^b B &= \log^a A \cdot \log^b B = A_a B_b
\end{align*}
\]

Therefore, all of the following mathematical functions, multiplication, division, logarithms, exponentiation, power including roots can be implemented using the circuit shown above.
DIFFERENTIATING AMPLIFIER (The OpAmp Differentiator)

Since \(v_- \rightarrow 0 \) (virtual ground) then,
\[
 v_{\text{OUT}} = -R_1 i_R + v_- \quad \rightarrow \quad v_{\text{OUT}} = -R_1 i_R
\]
\[
 i_C = C_1 \frac{dv}{dt} = C_1 \frac{d(v_1 - v_-)}{dt} \quad \rightarrow \quad i_C = C_1 \frac{dv_1}{dt}
\]
\[
 v_{\text{OUT}} = -R C_1 \frac{dv_1}{dt}
\]

To change the sign use unity gain inverter at the input (or the output).

Frequency Response:
\[v_{\text{OUT}}(+) = -RC \frac{d}{dt} v_1(t) \text{ in } (s \text{ or } jw \text{ domain}) \rightarrow V_{\text{OUT}}(s) = -RC \frac{d}{dt} V_1 e^{st} \]

\[V_{\text{OUT}}(s) = -sRC \cdot V_1 e^{st} \quad V_1 e^{st} = V_1(s) \rightarrow V_{\text{OUT}}(s) = -sRC \cdot V_1(s) \]

\[V_{\text{OUT}}(jw) = -jwRC \cdot V_1(jw) \Rightarrow H(jw) = -j \left(\frac{w}{1/RC} \right) \]

INTEGRATING AMPLIFIER (The OpAmp Integrator)

For \(v_- = \) virtual ground and \(i_R = i_C \)

\[i_R = \frac{v_1 - v_-}{R} = \frac{v_1}{R} \quad \text{and} \quad i_C = C \frac{d}{dt} (v_- - v_{\text{OUT}}) = -C \frac{dv_{\text{OUT}}}{dt} \]

\[\frac{v_1}{R} = -C \frac{dv_{\text{OUT}}}{dt} \Rightarrow v_{\text{OUT}} = -\frac{1}{RC} \int_0^t v_-(t') dt' + v_{\text{OUT}}(0) \]

By introducing a switch the initial value, \(v_{\text{OUT}}(0) \) set at zero.
The switch, S keeps shorting the terminals of the capacitor for $t < 0$.
When it opens at $t = 0$ the capacitor's initial voltage is set to be zero.

Frequency Response:

$$V_{OUT}(s) = -\frac{1}{sRC}.V_1(s)$$
$$V(j\omega) = -\frac{1}{j\omega RC} V_1(j\omega)$$
POWER OPERATIONAL AMPLIFIERS

Complementary pair Q_1 and Q_2 have similar V_{BE} - I_C chs. and identical β's but one is NPN, the other is PNP.

$I_{OUT} = (\beta + 1).I_{OA}$
$(I_{OUT})_{MAX} \leq (\beta + 1).(I_{OA})_{MAX}$
$(I_{OA})_{MAX} \sim 10 \text{ mA }$ then $(I_{OUT})_{MAX} \sim 1 \text{ A}$

For higher currents you need to use a Darlington transistor.

Complementary Emitter Follower Chs.
Effect of Negative Feedback on Cross-Over Distortion

If A_{VO} of Op Amp. is very high $v_+ = v_-$

$v_1 = \frac{R_1}{R_1 + R_F} \cdot v_{OUT}$ \quad $v_{OUT} = \left(1 + \frac{R_F}{R_1}\right) v_1$

Note that the voltage v_1 will need to be $\frac{\pm 0.7 \, V}{A_{VO}} \approx \pm 7 \, \mu V$ to bring the output out of the cross-over distortion.

With an output swing of $\pm 10 \, V$, Gain ≈ 100 input swing is $\frac{\pm 10}{100} \approx \pm 0.1 \, V$.

Therefore the ratio of (peak input / input referred cross-over voltage) $\approx \frac{100 \, 000 \, \mu V}{7 \, \mu V} \approx 10^3$.
POWER AND OUTPUT RANGE LIMITATIONS

\[I_{OA} \leq I_{OAMAX} \sim 10 \text{ mA}, \quad V_{OA} \leq V_{OAMAX} \]

1. \[I_{LMAX} = I_{OUTMAX} \approx (\beta + 1)I_{OAMAX} \]

Typically \[V_{OAMAX} \approx V_{CC} - 1 \text{ V} \]

2. \[V_{LMAX} \leq V_{OAMAX} - V_{BE1} \]

3. \[P_{DQ1} = I_L(V_{CC} - V_L) \]

\[P_{DQA} = I_L(V_{CC} - V_L) \]

\[P_{MAXQ1} \geq I_{LMAX}V_{CC} \quad \text{worst case: } V_L \approx 0 \]

For a resistive load

\[V_L = R_LI_L \]

\[P_Q = \frac{V_L}{R_L}V_{CC} - \frac{V_L^2}{R_L} \]

For non-resistive loads it will be different.
i. OP AMP. DC VOLTAGE REGULATOR

Disadvantages to overcome:
1. Fixed voltage
2. It cannot handle large I_L because it needs high P_{DMAX} zeners
3. Output voltage varies because of finite $r_Z \sim 1-10 \, \Omega$
4. Output resistance $\approx r_Z$, cannot be smaller.
\[
V_+ \approx V_- \
k_1 V_Z = k_2 V_L \quad \Rightarrow \quad V_L = \frac{k_1}{k_2} V_Z
\]
where \(0 \leq k_1 \leq 1\) and \(k_2 = \frac{R_1}{R_1 + R_F}\)

Power is supplied by \(V_{CC}\). To make \(V_{UR}\) the source that supplies power to \(R_L\) simply eliminate \(V_{CC}\) use \(V_{UR}\) for it.

Limitations:

- \(I_{L_{MAX}} < (\beta + 1) I_{O_{MAX}}\)
- For \(V_{CC} = V_{UR_{MAX}}\) \(P_{D_{MAX}} > I_{L_{MAX}}(V_{CC} - V_{L_{MIN}})\)
- \(V_{L_{MAX}} < V_{UR_{MIN}} - V_{BE1} - V_{O_{A DROP}}\)
OP AMP. VOLTAGE REGULATOR WITH ADJUSTABLE CURRENT LIMIT

Current limit is turned on when \(I_{RCL} \cdot R_{CL} \approx V_{BE \, Q2} \approx 0.7 \, V \)

\[
I_{RCL} = I_L + I_{FEEDBACK} \quad \Rightarrow \quad I_{L_{MAX}} \cdot R_{CL} \approx 0.7 \, V
\]

Comment: Design of zener diode regulator is much simpler since its load is a constant (does not vary) and is also a high resistance load (does not need high current to operate).

PRECISION RECTIFIERS

Input: \(v_{IN} \) (t)

Output: \(v_{OUT} \) (t) = \(
\begin{cases}
\mp K v_{IN} (t) & \text{for } v_{IN} > 0 \\
0 & \text{for } v_{IN} < 0
\end{cases}
\)

Variations:

(A) Responds to: \(v_{IN} > 0 \) and \(v_{IN} > 0 \) \(v_{IN} > 0 \)

1. inverts or,
2. non – inverting

(B) Responds to: \(v_{IN} < 0 \) and \(v_{IN} < 0 \)

1. inverts or
2. non – inverting
Circuit for A1

\[v_{OUT} = \frac{R_2}{R_1} \cdot v_{IN} \]

When \(v_{IN} > 0 \) \(v_{OUT} = (v_-) - i_{IN} \cdot R_2 \), \(i_{IN} = \frac{v_{IN} - (v_-)}{R_1} \) and \((v_-) \to 0 \)

\[v_{OUT} = \frac{R_2}{R_1} \cdot v_{IN} \]

When \(v_{IN} > 0 \) \(v_{OUT} = (v_-) - i_{R_2} \cdot R_2 = 0 \) for \((v_-) \to 0 \) and \(i_{R_2} = 0 \)

The "Precision Half-Wave Rectifier Circuit A1" given above responds to positive \(v_{in} \), amplifies it and inverts.

Circuit for B1

\[v_{OUT} = \begin{cases} \frac{R_2}{R_1} v_{IN} & \text{if } v_{IN} < 0 \\ 0 & \text{if } v_{IN} > 0 \end{cases} \]

The "Precision Half-Wave Rectifier Circuit B1" given above responds to negative \(v_{in} \), amplifies it and inverts.