Thevenin’s Theorem
Introduction

- Thevenin’s Theorem is a very important and useful theorem.
- It is a method for the reduction of a portion of a complex circuit into a simple one.
- It reduces the need for repeated solutions of the same sets of equations.
Thevenin Equivalent Circuit

Any two-terminal linear network, composed of voltage sources, current sources, and resistors, can be replaced by an equivalent two-terminal network consisting of an independent voltage source in series with a resistor.
V-I Characteristic of Thevenin Equivalent

\[v = V_{Th} - R_{Th}i \]
Finding V_{Th} and R_{Th}

- **Open circuit across terminals**

 $i = 0, \ v = v_{oc} = V_{Th}$

Calculate the open-circuit voltage in the original network, v_{oc}

$V_{Th} = v_{oc}$
Finding V_{Th} and R_{Th} – Cont’d

- Short circuit across terminals

$v = 0,\quad i = i_{sc} = \frac{V_{Th}}{R_{Th}}$

Calculate the short-circuit current in the original network, i_{sc}

$$R_{Th} = \frac{V_{oc}}{i_{sc}}$$
Thevenin Equivalent - Example

Find the Thevenin equivalent with respect to terminals a,b.
Alternative Method of finding R_{Th}
-- for circuits containing only independent sources

1. Set all independent sources to zero
2. Find equivalent resistance R_{eq} of the dead circuit between the terminals

\[R_{Th} = R_{eq} \]
Alternative Method of finding R_{Th}

--- for circuits containing dependent sources

1. Set all independent sources to zero
2. Apply either a test voltage source v_0 (or a test current source i_0) to the terminals
3. Calculate i_0 (or v_0)

\[R_{Th} = \frac{v_0}{i_0} \]
Find the Thevenin equivalent of the following circuit. If a 10Ω resistor is connected between the terminals, what current will flow in it?