OTHER JFET AMPLIFIER CONFIGURATIONS

<table>
<thead>
<tr>
<th>CONFIGURATIONS</th>
<th>Z_{in}</th>
<th>Z_{out}</th>
<th>A_{v_o}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common – Source</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Common – Drain (Source – Follower)</td>
<td>High</td>
<td>Low</td>
<td>~ 1</td>
</tr>
<tr>
<td>Common – Gate (High frequency applications)</td>
<td>Very Low</td>
<td>High</td>
<td>Medium</td>
</tr>
</tbody>
</table>

COMMON-DRAIN (SOURCE-FOLLOWER) JFET AMPLIFIER

Figure 1. Common-Drain (Source-Follower) SSAC JFET Amplifier

Note that R_D is not needed and should be eliminated from the JFET circuit when operating in the common-drain configu
Note that R_D is not needed and should be eliminated from the JFET circuit when operating in the common-drain configuration.

INPUT IMPEDANCE OF COMMON-DRAIN AMPLIFIER

$R_{in} = R_G$
(By inspection of the SSAC equivalent)

Comment: In principle R_G can be chosen as large as one wants. However, finite leakage current of the biased JFET chosen R_G. Practical values limit R_G at 10 MΩ level for room temperature operation. For high temperature operation, JFET junction leakage currents getting very close to base-emitter forward bias current of a BJT.
VOLTAGE GAIN OF COMMON-DRAIN AMPLIFIER

Figure 3.

\[\Delta V_{GS} = g_m (v_{in} - v_{out}) \]

\[v_{out} = g_m (v_{in} - v_{out}) (r_{ds} \parallel R_S \parallel R_L) \]

\[v_{out} [1 + g_m (r_{ds} \parallel R_S \parallel R_L)] = g_m v_{in} (r_{ds} \parallel R_S \parallel R_L) \]

\[A_v = \frac{v_{out}}{v_{in}} = \frac{g_m (r_{ds} \parallel R_S \parallel R_L)}{1 + g_m (r_{ds} \parallel R_S \parallel R_L)} \]

\[A_v = \frac{1}{1 + \frac{1}{g_m (r_{ds} \parallel R_S \parallel R_L)}} \leq 1 \quad \text{Unity Gain} \]

Since, \(r_{ds}, R_S, R_L \) are typically \(>> \frac{1}{g_m} \), \(A_v \) is close to unity.

Note that \(R_L \) does not change the unity gain significantly unless \(R_L \) becomes as low as \(\frac{1}{g_m} \).

This predicts \(R_{out} \) of the circuit to be in the order of \(\frac{1}{g_m} \), and, therefore, low.

Proof follows:
OUTPUT IMPEDANCE OF COMMON-DRAIN AMPLIFIER

Using \(V_{\text{test}} - I_{\text{test}} \), \(v_g = 0 \) and \(v_s = V_{\text{test}} \) if \(R_L \) excluded.

\[
R_{\text{out}} = \frac{V_{\text{test}}}{I_{\text{test}}} = \frac{1}{\left(\frac{1}{r_{ds} || R_s} + g_m\right)}
\]

Typically \(\left(\frac{1}{r_{ds} || R_s}\right) \ll g_m \) therefore \(R_{\text{out}} \approx \frac{1}{g_m} \)

From the design example,

\(g_m = 1 \text{ mS at } I_{DQ} \approx 0.41 \text{ mA, therefore, } R_{\text{out}} \approx 1 \text{ K}\Omega \)

Therefore, if we use the same bias except for common-drain rather than common-source \(R_{\text{out}} = 1\text{K}\Omega \). Note that BJT counterpart, the common-collector. For the common-collector stage,

\[
R_{\text{out}} \approx \frac{kT}{q} \frac{1}{I_{CQ}}
\]

which yields about 63 ohms, more than an order of magnitude smaller than the common-drain for the same bias. In conclusion, if low output impedance is of prime concern a BJT common-collector (emitter-follower) should be