Course Name:
ELE 444
ANALOG INTEGRATED CIRCUITS
(Introduction to Analog VLSI Design)

Semester:
Fall 2007/08

Coordinator/Instructor:
Dr. M.G. Guvench
guvench@maine.edu
Phone: 780-5581
Fax: 780-5129
Secretary: 780-5287

Course Hrs/Crs:
3 Hrs lecture, 3 Cr.s

Days/Time:
Monday & Wednesday 2:00 – 3:40 147 John Mitchell Ctr.

Prerequisites:
ELE 342/343 Electronics I & II

Goals:
The goal of this course is to introduce the principles of operation, design and technology of Analog Integrated Circuits to Electrical Engineering students at Senior level. VLSI technology and analog integrated circuit design is covered with an emphasis on CMOS Technology. CMOS layout design (LEDIT) and analog simulation tools (PSPICE) are demonstrated and used. Students will do a design project at the end.

(Students are given the opportunity of having their designs fabricated on a chip and may expand their chip design experience in a follow-up “ELE498 VLSI Design” course.)

Textbooks:
1. "CMOS Analog Circuit Design"
 Phillip E. Allen and Douglas R. Holdberg

2. "Physical Design of CMOS Integrated Circuits Using L-EDIT" (includes student version of LEDIT software)

Other Books:
1. "Design and Applications of Analog Integrated Circuits"
 Sidney Soclof, Prentice Hall 1991

2. "Analog VLSI Design, nMOS and CMOS"
 M.R. Haskard and I.C. May
 Prentice Hall 1987

 Addison-Wesley 2002

Academic Support for Students with Disabilities-Students who may need assistance due to a disability are encouraged to contact the Office of Academic Support for Students with Disabilities, located in Luther Bonney 242. Phone number 780-4076, TTY 780-4395.
CONTENTS

1. Silicon Integrated Circuit Technology (A Review)
 Crystal growth, epitaxi, photolithograpy
 Selective doping, oxidation and deposition

2. Fabrication of Integrated Circuit Components in CMOS Technology
 MOS devices
 Isolation techniques
 Bipolar devices and parasitics
 Passive components
 The CMOS inverter block

3. Principles of CMOS VLSI Layout
 Device geometries
 Design rules
 Design tools (L-Edit)

4. The MOS transistor and SPICE simulation
 MOS transistor physics, operation
 MOS transistor characteristics and SPICE model
 MOS amplifiers

5. CMOS Device Characterization

6. The CMOS Inverter as an analog amplifier

7. The Difference Amplifier and Conventional Analog Methods
 The Difference Amplifier
 Current mirrors/Voltage references
 Non-differential High Gain Stages
 Voltage Follower/Power Amplifier

 Frequency response and Compensation Techniques
 Op. Amp. Design with Internal Compensation

9. Oscillators and Phase-Locked Loops

10. Integrated Sensors

11. DC and Switched Capacitor Amplifier and Filter Circuits

12. A/D, D/A Conversion Methods

(Items 9-12 will be covered subject to interest and time left at the end of the semester)
ELE 444 TEST DATES

TEST #1 October 17, 2007 (Wednesday)
Project Reports due December 5, 2007 (Wednesday)
Project Presentations December 10, 2007 (Monday)
TEST #2 (Final) December 17, 2007 (Monday)

Course Policies: TESTS 2 X 30 %
HOMEWORKS+ QUIZ + PROJECT 40 %

...